Powered By Blogger

lunes, 21 de junio de 2010

FUNCIONES TRASCENDENTENTALES, FUNCION EXPONECIALES,FUNCION PARTE ENTERA Y FUNCON LOGARITMICAS

Función trascendentales

Una función trascendente es una función que no puede ser representada por una ecuación polinómica cuyos coeficientes son a su vez polinomios, en comparación una función algebraica sí satisface tal tipo de ecuación. Es decir una función de una variable es trascendente si es independiente en un sentido algebraico de dicha variable.
Funciones algebraicas y trascendentes El logaritmo y la función exponencial son ejemplos de funciones trascendentes. El término función trascendente a menudo es utilizado para describir a las funciones trigonométricas, o sea, seno), coseno, tangente, cotangente, secante, y cosecante.
Una función que no es trascendente se dice que es algebraica. Ejemplos de funciones algebraicas son las funciones racionales y la función raíz cuadrada.
La operación de calcular la función primitiva (o integral indefinida) de una función algebraica es una fuente de funciones trascendentes. Por ejemplo, la función logaritmo surgió a partir de la función recíproca en un intento para calcular el área de un sector hiperbólico. Por lo tanto el ángulo hiperbólico y las funciones hiperbólicas senh, cosh, y tanh son todas funciones trascendentes
Ejemplos
{draw:frame}
{draw:frame}
{draw:frame}
La función exponencial es una función real que tiene la forma de f(_x_)=e_x_. Toda función exponencial tiene por dominio de definición el conjunto de los números reales. Además la función exponencial es la función inversa del logaritmo natural. Esta función se denota equivalentemente como f(_x_)=e_x_ ó exp(_x_), donde e es la base de los logaritmos naturales. Tiene la particularidad de que si su base es el numero de euler su derivada es la misma función.
En términos generales, una función real F(_x_) es de tipo exponencial si tiene la forma
{draw:frame}
siendo {draw:frame} números reales, {draw:frame} . Se observa en los gráficos que si a > 1 la curva será creciente.
En matemática, el logaritmo de un número en una base...

Función parte entera

está definida por:


1. La función en que el menor número de los dos números enteros entre los que está comprendido x. De esta forma, si x es un número entero, su parte entera es el mismo entero. Si x = 5/2 entonces su parte entera será 2.

2. La función techo si es el mayor número de los dos números enteros entre los que está comprendido x.


Siempre se tiene que




y a la izquierda hay una igualdad si y sólo si x es entero.
Para todo entero k y para todo número real x se tiene:


El redondeo usual del número x al entero más próximo se puede expresar como la parte entera de x + 0,5.

La derivada de la función parte entera no está definida en los números enteros, y en cualquier otro punto vale 0.

Funcion logaritmicas

Una función logarítmica es aquella que genéricamente se expresa como f (x) == logax, siendo a la base de esta función, que ha de ser positiva y distinta de 1.

La función logarítmica es la inversa de la función exponencial, dado que:

loga x = b Û ab = x.

sábado, 19 de junio de 2010

FUNCIONES



funcion inyectiva:En matemáticas,f: y una función es inyectiva si a cada valor del conjunto (dominio) le corresponde un valor distinto en el conjunto (imagen) de . Es decir, a cada elemento del conjunto A le corresponde un solo valor de B tal que, en el conjunto A no puede haber dos o más elementos que tengan la misma imagen.

Así, por ejemplo, la función de números reales , dada por no es inyectiva, puesto que el valor 4 puede obtenerse como f(2) y f( − 2). Pero si el dominio se restringe a los números positivos, obteniendo así una nueva función entonces sí se obtiene una función inyectiva


funcion sobreyectiva:
En matemática, una función es sobreyectiva (epiyectiva, suprayectiva, suryectiva o exhaustiva), si está aplicada sobre todo el codominio, es decir, cuando la imagen , o en palabras más sencillas, cuando cada elemento de "Y" es la imagen de como mínimo un elemento de "X".Formalmente,




Función biyectiva
Ejemplo de función biyectiva.En matemática, una función es biyectiva si es al mismo tiempo inyectiva y sobreyectiva.

Formalmente,


Para ser más claro se dice que una función es biyectiva cuando todos los elementos del conjunto de partida en este caso (x) tienen una imagen distinta en el conjunto de llegada, que es la regla de la función inyectiva. Además, a cada elemento del conjunto de salida le corresponde un elemento del conjunto de llegada, en este caso (y); esta es la norma que exige la función sobreyectiva.

BIOGRAFIA DE AURELIO BALDOR

Aurelio Baldor (La Habana, 22 de octubre de 1906 - (†)Miami, Estados Unidos, 2 de abril de 1978) fue un matemático y abogado cubano. Fue autor del célebre libro de texto Álgebra de Baldor, publicado por primera vez en 1941. Fue el hijo menor de Gertrudis y Daniel Baldor y portador de un apellido que significa "valle de oro". Fundó un colegio en Cuba con su nombre, pero en 1959 Baldor tuvo problemas con el nuevo gobierno cubano que resultó de la Revolución. A pesar de los planes de Raúl Castro de detenerlo, el jefe revolucionario Camilo Cienfuegos lo protegió debido a su admiración por Baldor. Tras la muerte de Cienfuegos en 1960, Baldor y su familia se fueron a México y luego a Nueva Orléans, Estados Unidos. Después se trasladaría a Nueva York y a Nueva Jersey, donde continuó dando clases en el Saint Peters College. Se pasaba su vida escribiendo teoremas y ejercicios matemáticos y poco a poco fue perdiendo los 100 kilos de peso que también lo hacían memorable. Finalmente, Baldor murió en Miami en 1978 donde hoy viven sus hijos y nietos. El Álgebra de Baldor tenía en su portada tradicional una imagen supuestamente del matemático persa Al Juarismi, razón por la cual algunos pensaban que el autor era árabe. El libro sigue siendo utilizado como texto de enseñanza secundaria y preparatoria en toda hispanoamérica

jueves, 20 de mayo de 2010

EL EFECTO INVERNADERO




EL EFECTO INVERNADERO

Se denomina efecto invernadero al fenómeno por el cual determinados gases, que son componentes de una atmósfera planetaria, retienen parte de la energía que el suelo emite por haber sido calentado por la radiación solar. Afecta a todos los cuerpos planetarios dotados de atmósfera. Este fenómeno evita que la energía solar recibida constantemente por la superficie del planeta vuelva inmediatamente al espacio exterior, produciendo a escala planetaria un efecto similar al observado en un invernadero.

Algunos científicos sostienen que el efecto invernadero se está viendo acentuado en la Tierra por la emisión de ciertos gases, como el dióxido de carbono y el metano, debida a la actividad humana. Sin embargo, en la actualidad no existe un consenso en la comunidad científica acerca de la validez de esta hipótesis.

Balance energético de la Tierra

La atmósfera es clave en el mantenimiento del equilibrio entre la recepción de la radiación solar y la emisión de radiación infrarroja. La atmósfera devuelve al espacio la misma energía que recibe del Sol. Esta acción de equilibrio se llama balance energético de la Tierra y permite mantener la temperatura en un estrecho margen que posibilita la vida

En un período suficientemente largo el sistema climático debe estar en equilibrio, la radiación solar entrante en la atmósfera está compensada por la radiación saliente. Pues si la radiación entrante fuese mayor que la radiación saliente se produciría un calentamiento y lo contrario produciría un enfriamiento. Por tanto, en equilibrio, la cantidad de radiación solar entrante en la atmósfera debe ser igual a la radiación solar reflejada saliente más la radiación infrarroja térmica saliente. Toda alteración de este balance de radiación, ya sea por causas naturales u originado por el hombre (antropógeno), es un forzamiento radiativo y supone un cambio de clima y del tiempo asociado.

Los flujos de energía entrante y saliente se juntan en el sistema climático ocasionando muchos fenómenos tanto en la atmósfera, como en el océano o en la tierra. Así la radiación entrante solar se puede dispersar en la atmósfera o ser reflejada por las nubes y los aerosoles. La superficie terrestre puede reflejar o absorber la energía solar que le llega. La energía solar de onda corta se transforma en la Tierra en calor. Esa energía no se disipa, se encuentra como calor sensible o calor latente, se puede almacenar durante algún tiempo, transportarse en varias formas, dando lugar a una gran variedad de tiempo y a fenómenos turbulentos en la atmósfera o en el océano.Finalmente vuelve a ser emitida a la atmósfera como energía radiante de onda larga. Un proceso importante del balance de calor es el efecto albedo, por el que algunos objetos reflejan más energía solar que otros. Los objetos de colores claros, como las nubes o la superficies nevadas, reflejan más energía, mientras que los objetos oscuros, como los océanos y los bosques, absorben más energía solar que la que reflejan. Otro ejemplo de estos procesos es la energía solar que actúa en los océanos, la mayor parte se consume en la evaporación del agua de mar, luego esta energía es liberada en la atmósfera cuando el vapor de agua se condensa en lluvia.

La imagen adjunta resume el Balance Global anual de energía de la Tierra desarrollado en 2008 por Trenberth, Fasullo y Kiehl del NCAR ( National Center for Atmospheric Research). Se basa en mediciones del Sistema de Energía Radiante de la Tierra y de las Nubes de la Agencia NASA tomadas por satélite entre marzo de 2000 y mayo de 2004.

La Tierra, como todo cuerpo caliente, superior al cero absoluto, emite radiación térmica, pero al ser su temperatura mucho menor que la solar, emite radiación infrarroja por ser un cuerpo negro. La radiación emitida depende de la temperatura del cuerpo. En el estudio del NCAR han concluido una oscilación anual media entre 15,9 °C en julio y 12,2 °C en enero compensando los dos hemisferios, que se encuentran en estaciones distintas y la parte terrestre que es de día con la que es de noche. Esta oscilación de temperatura supone una radiación media anual emitida por la Tierra de 396 W/m2.

La energía infrarroja emitida por la Tierra es atrapada en su mayor parte en la atmósfera y reenviada de nuevo a la Tierra. Este fenómeno se llama Efecto Invernadero y garantiza las temperaturas templadas del planeta. Según el estudio anterior de la NCAR, el Efecto Invernadero de la atmósfera hace retornar nuevamente a la Tierra 333 W/m2.

Globalmente la superficie de la Tierra absorbe energía solar por valor de 161 w/m2 y del Efecto Invernadero de la Atmósfera recibe 333 w/m2, lo que suma 494 w/m2, como la superficie de la Tierra emite (o dicho de otra manera pierde) un total de 493 w/m2 (que se desglosan en 17 w/m2 de calor sensible, 80 w/m2 de calor latente de la evaporación del agua y 396 w/m2 de energía infrarroja), supone una absorción neta de calor de 0,9 w/m2, que en el tiempo actual está provocando el calentamiento de la TierrA

jueves, 22 de abril de 2010

DIA INTERNACIONAL DE LA TIERRA









DÍA DE LA TIERRA


El Día de la Tierra es un día festivo celebrado en muchos países el 22 de abril. Su promotor, el senador estadounidense Gaylord Nelson, instauró este día para crear una conciencia común a los problemas de la contaminación, la conservación de la biodiversidad y otras preocupaciones ambientales para proteger la Tierra.
Historia
La primera manifestación tuvo lugar el 22 de abril de 1970, promovida por el senador y activista ambiental Gaylord Nelson, para la creación de una agencia ambiental. En esta convocatoria participaron dos mil universidades, diez mil escuelas primarias y secundarias y centenares de comunidades. La presión social tuvo sus logros y el gobierno de los Estados Unidos creó la Environmental Protection Agency (Agencia de Protección Ambiental) y una serie de leyes destinada a la protección del medio ambiente.
En 1972 se celebró la primera conferencia internacional sobre el medio ambiente: la Conferencia de Estocolmo, cuyo objetivo fue sensibilizar a los líderes mundiales sobre la magnitud de los problemas ambientales y que se instituyeran las políticas necesarias para erradicarlos.
Las Naciones Unidas celebran el día de la Tierra cada año en el equinoccio vernal (alrededor del 21 de marzo). El 26 de febrero de 1971, el secretario general U Thant firmó una proclamación a ese efecto. Al momento del equinoccio suena la Campana de la Paz en la sede central de la en Nueva York
El Día de la Tierra es una fiesta que pertenece a la gente y no está regulada por una sola entidad u organismo; tampoco está relacionado con reivindicaciones políticas, nacionales, religiosas, ideológicas ni raciales.
En el Día de la Tierra se reflexiona sobre la importancia del vital líquido que es indispensable para la vida del ser humano como lo que es el agua ya que de toda el agua que existe en el planeta tan solo en 2% es bebible.
El Día de la Tierra apunta a la toma de conciencia de los recursos naturales de la Tierra y su manejo, a la educación ambiental, y a la participación como ciudadanos ambientalmente conscientes y responsables.
En el Día de la Tierra todos estamos invitados a participar en actividades que promuevan la salud de nuestro planeta, tanto a nivel global como regional y local.
"La Tierra es nuestro hogar y el hogar de todos los seres vivos. La Tierra misma está viva. Somos partes de un universo en evolución. Somos miembros de una comunidad de vida interdependiente con una magnificente diversidad de formas de vida y culturas. Nos sentimos humildes ante la belleza de la Tierra y compartimos una reverencia por la vida y las fuentes de nuestro ser..."
Día de la Tierra









miércoles, 21 de abril de 2010


Historia y teoría celular

La historia de la biología celular ha estado ligada al desarrollo tecnológico que pudiera sustentar su estudio. De este modo, el primer acercamiento a su morfología se inicia con la popularización del microscopios rudimentarios de lentes compuestas en el siglo XVII, se suplementa con diversas técnicas histológicas para microscopía óptica en los siglos XIX y XX y alcanza un mayor nivel resolutivo mediante los estudios de microscopía electrónica, de fluorescencia y confocal, entre otros, ya en el siglo XX. El desarrollo de herramientas moleculares, basadas en el manejo de ácidos nucleicos y enzimas permitieron un análisis más exhaustivo a lo largo del siglo XX.[5]
Descubrimiento

Robert Hooke, quien acuñó el término «célula».
Las primeras aproximaciones al estudio de la célula surgieron en el siglo XVII;[6] tras el desarrollo a finales del siglo XVI de los primeros microscopios.[7] Éstos permitieron realizar numerosas observaciones, que condujeron en apenas doscientos años a un conocimiento morfológico relativamente aceptable. A continuación se enumera una breve cronología de tales descubrimientos:
1665: Robert Hooke publicó los resultados de sus observaciones sobre tejidos vegetales, como el corcho, realizadas con un microscopio de 50 aumentos construido por él mismo. Este investigador fue el primero que, al ver en esos tejidos unidades que se repetían a modo de celdillas de un panal, las bautizó como elementos de repetición, «células» (del latín cellulae, celdillas). Pero Hooke sólo pudo observar células muertas por lo que no pudo describir las estructuras de su interior.[8]
Década de 1670: Anton Van Leeuwenhoek, observó diversas células eucariotas (como protozoos y espermatozoides) y procariotas (bacterias).
1745: John Needham describió la presencia de «animálculos» o «infusorios»; se trataba de organismos unicelulares.




CELULA
Para otros usos de este término, véase Célula (desambiguación).

Micrografía al microscopio electrónico de barrido de células de Escherichia coli.
Una célula (del latín cellula, diminutivo de cellam, celda, cuarto pequeño) es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo.[1] De este modo, puede clasificarse a los organismos vivos según el número que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares. En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano. Las células suelen poseer un tamaño de 10 µm y una masa de 1 ng, si bien existen células mucho mayores.
La teoría celular, propuesta en 1839 por Matthias Jakob Schleiden y Theodor Schwann, postula que todos los organismos están compuestos por células, y que todas las células derivan de otras precedentes. De este modo, todas las funciones vitales emanan de la maquinaria celular y de la interacción entre células adyacentes; además, la tenencia de la información genética, base de la herencia, en su ADN permite la transmisión de aquélla de generación en generación.[2]
La aparición del primer organismo vivo sobre la Tierra suele asociarse al nacimiento de la primera célula. Si bien existen muchas hipótesis que especulan cómo ocurrió, usualmente se describe que el proceso se inició gracias a la transformación de moléculas inorgánicas en orgánicas bajo unas condiciones ambientales adecuadas; tras esto, dichas biomoléculas se asociaron dando lugar a entes complejos capaces de autorreplicarse. Existen posibles evidencias fósiles de estructuras celulares en rocas datadas en torno a 4 o 3,5 miles de millones de años (giga-años o Ga.).[3] [4] Las evidencias de la presencia de vida basadas en desviaciones de proporciones isotópicas son anteriores (cinturón supracortical de Isua, 3,85 Ga.).[a] Existen dos grandes tipos celulares: las procariotas (que comprenden las células de arqueas y bacterias) y las eucariotas (divididas tradicionalmente en animales y vegetales, si bien se incluyen además hongos y protistas, que también tienen células con propiedades características)